skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viswanath, Pramod"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Progress in designing channel codes has been driven by human ingenuity and, fittingly, has been sporadic. Polar codes, developed on the foundation of Arikan's polarization kernel, represent the latest breakthrough in coding theory and have emerged as the state-of-the-art error-correction code for short-to-medium block length regimes. In an effort to automate the invention of good channel codes, especially in this regime, we explore a novel, non-linear generalization of Polar codes, which we call DEEPPOLAR codes. DEEPPOLAR codes extend the conventional Polar coding framework by utilizing a larger kernel size and parameterizing these kernels and matched decoders through neural networks. Our results demonstrate that these data-driven codes effectively leverage the benefits of a larger kernel size, resulting in enhanced reliability when compared to both existing neural codes and conventional Polar codes. 
    more » « less
  2. Böhme, Rainer; Kiffer, Lucianna (Ed.)
    Automated Market Makers (AMMs) are essential in Decentralized Finance (DeFi) as they match liquidity supply with demand. They function through liquidity providers (LPs) who deposit assets into liquidity pools. However, the asset trading prices in these pools often trail behind those in more dynamic, centralized exchanges, leading to potential arbitrage losses for LPs. This issue is tackled by adapting market maker bonding curves to trader behavior, based on the classical market microstructure model of Glosten and Milgrom. Our approach ensures a zero-profit condition for the market maker’s prices. We derive the differential equation that an optimal adaptive curve should follow to minimize arbitrage losses while remaining competitive. Solutions to this optimality equation are obtained for standard Gaussian and Lognormal price models using Kalman filtering. A key feature of our method is its ability to estimate the external market price without relying on price or loss oracles. We also provide an equivalent differential equation for the implied dynamics of canonical static bonding curves and establish conditions for their optimality. Our algorithms demonstrate robustness to changing market conditions and adversarial perturbations, and we offer an on-chain implementation using Uniswap v4 alongside off-chain AI co-processors. 
    more » « less
  3. Böhme, Rainer; Kiffer, Lucianna (Ed.)
    Decentralized finance (DeFi) borrowing and lending platforms are crucial to the decentralized economy, involving two main participants: lenders who provide assets for interest and borrowers who offer collateral exceeding their debt and pay interest. Collateral volatility necessitates over-collateralization to protect lenders and ensure competitive returns. Traditional DeFi platforms use a fixed interest rate curve based on the utilization rate (the fraction of available assets borrowed) and determine over-collateralization offline through simulations to manage risk. This method doesn't adapt well to dynamic market changes, such as price fluctuations and evolving user needs, often resulting in losses for lenders or borrowers. In this paper, we introduce an adaptive, data-driven protocol for DeFi borrowing and lending. Our approach includes a high-frequency controller that dynamically adjusts interest rates to maintain market stability and competitiveness with external markets. Unlike traditional protocols, which rely on user reactions and often adjust slowly, our controller uses a learning-based algorithm to quickly find optimal interest rates, reducing the opportunity cost for users during periods of misalignment with external rates. Additionally, we use a low-frequency planner that analyzes user behavior to set an optimal over-collateralization ratio, balancing risk reduction with profit maximization over the long term. This dual approach is essential for adaptive markets: the short-term component maintains market stability, preventing exploitation, while the long-term planner optimizes market parameters to enhance profitability and reduce risks. We provide theoretical guarantees on the convergence rates and adversarial robustness of the short-term component and the long-term effectiveness of our protocol. Empirical validation confirms our protocol’s theoretical benefits. 
    more » « less
  4. Böhme, Rainer; Kiffer, Lucianna (Ed.)
    Crash fault tolerant (CFT) consensus algorithms are commonly used in scenarios where system components are trusted - e.g., enterprise settings and government infrastructure. However, CFT consensus can be broken by even a single corrupt node. A desirable property in the face of such potential Byzantine faults is accountability: if a corrupt node breaks the protocol and affects consensus safety, it should be possible to identify the culpable components with cryptographic integrity from the node states. Today, the best-known protocol for providing accountability to CFT protocols is called PeerReview; it essentially records a signed transcript of all messages sent during the CFT protocol. Because PeerReview is agnostic to the underlying CFT protocol, it incurs high communication and storage overhead. We propose CFT-Forensics, an accountability framework for CFT protocols. We show that for a special family of forensics-compliant CFT protocols (which includes widely-used CFT protocols like Raft and multi-Paxos), CFT-Forensics gives provable accountability guarantees. Under realistic deployment settings, we show theoretically that CFT-Forensics operates at a fraction of the cost of PeerReview. We subsequently instantiate CFT-Forensics for Raft, and implement Raft-Forensics as an extension to the popular nuRaft library. In extensive experiments, we demonstrate that Raft-Forensics adds low overhead to vanilla Raft. With 256 byte messages, Raft-Forensics achieves a peak throughput 87.8% of vanilla Raft at 46% higher latency (+44 ms). We finally integrate Raft-Forensics into the open-source central bank digital currency OpenCBDC, and show that in wide-area network experiments, Raft-Forensics achieves 97.8% of the throughput of Raft, with 14.5% higher latency (+326 ms). 
    more » « less
  5. Player-replaceability is a property of a blockchain protocol that ensures every step of the protocol is executed by an unpredictably random (small) set of players; this guarantees security against a fully adaptive adversary and is a crucial property in building permissionless blockchains. Forensic Support is a property of a blockchain protocol that provides the ability, with cryptographic integrity, to identify malicious parties when there is a safety violation; this provides the ability to enforce punishments for adversarial behavior and is a crucial component of incentive mechanism designs for blockchains. Player-replaceability and strong forensic support are both desirable properties, yet, none of the existing blockchain protocols have both properties. Our main result is to construct a new BFT protocol that is player-replaceable and has maximum forensic support. The key invention is the notion of a ``transition certificate'', without which we show that natural adaptations of extant BFT and longest chain protocols do not lead to the desired goal of simultaneous player-replaceability and forensic support. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)